Что такое фронтальная камера в смартфоне?

Относительное отверстие, диафрагменное число — разбираемся с понятиями и цифрами

Сейчас будет немного элементарной математики. Можно было опустить этот раздел, ограничившись конечными выводами, но для полного понимания предлагаю раз и навсегда закрыть этот вопрос и не путаться впоследствии в определениях.

Относительное отверстие объектива представляет собой отношение диаметра отверстия объектива (которое формируется лепестками диафрагмы) к фокусному расстоянию. Диафрагма (апертура, диафрагменное число) является величиной, обратной относительному отверстию. Выражается дробью с числителем 1.

Для примера рассмотрим объектив с фокусным расстоянием 85 мм. Возьмем диаметр отверстия объектива 30.3 мм (для примера). Поделим его на фокусное 85 мм, получим 0.36. Диафрагменное число обратно пропорционально этому значению, т.е. равно 1/0.36 = 2.8.

N = D / F = 1 / f , где

N — относительное отверстие;

D — диаметр отверстия, мм;

f — диафрагменное число.

Из формулы видно, что диафрагменное число является отношением фокусного расстояния к диаметру отверстия объектива.

Допустим, у объектива относительное отверстие 1/8. Может быть записано 1:8 или f1/8 или F1:8. Запись не так важна.

8 в знаменателе – это и есть наша диафрагма, которая определяет, во сколько раз текущее отверстие объектива меньше текущего фокусного расстояния.

Диафрагма может быть записана в одном из видов: f/8, f1/8, F8.

Как может f/1.8 быть больше, чем f/11?

Это своего рода тест на внимательность) Если вы прочли вышенаписанное, то ответ уже знаете. Для других отмечу отдельно, т.к. устоявшаяся терминология может запутывать.

Диафрагменное число (рядом с f) показывает, на сколько отверстие меньше фокусного расстояния. Т.е. в первом случае (для f/1.8) оно меньше фокусного в 1.8 раза, а во втором (для f/11) – аж в 11 раз. Значит, f/1.8 больше f/11.

Можно также сравнивать дроби относительных отверстий. 1/1.8 > 1/11.

Что такое диафрагмирование?

Диафрагмирование – это изменение диафрагменного числа. В обиходе вы будете встречать «изменить диафрагму до …такого-то значения». Вот знайте, что этот процесс называется диафрагмированием.

Пройдемся по основным терминам, связанным с изменением диафрагмы, которые встречаются в обиходе.

Ряд диафрагменных чисел и светосила

С числами диафрагмы разобрались. Вопрос – как они между собой связаны? В фотографии есть такое понятие, как стоп. Применительно к диафрагме стоп определяет величину, на которую нужно изменить диафрагму, чтобы количество пропускаемого света изменилось в 2 раза. Т.е. может встретиться понятие «прикрыть диафрагму на 2 стопа» — оно означает, что нужно прикрыть диафрагму настолько, чтобы света попадало в 4 раза меньше.

И тут есть важный момент. Понятно, что на пропускание света напрямую влияет диаметр отверстия объектива.

Изменение диафрагмы в 2 раза не равно изменению количества пропускаемого света в 2 раза. На то, сколько будет пропущено света, влияет не сам диаметр, а площадь круга, им образованная. При этом, как мы помним, диафрагменное число f связано с диаметром отверстия. Позанимаемся еще немного математикой.

Площадь круга прямо пропорциональна квадрату диаметра. А в формуле относительного отверстия выше у нас фигурирует просто диаметр. Светосила прямо пропорциональна квадрату относительного отверстия.

Q = D2 / f2 , где

Q — светосила;

D — диаметр отверстия;

f — диафрагменное число.

Отсюда:

f = √ D2 / Q

Условно примем светосилу Q за 1. Формула превратится в: f = D.

Теперь мы хотим увеличить ее до 2х. Формула превращается в: F = D / √ 2 = 0,71 * D.

Также есть и промежуточные значения, которые представляют собой 1/3 или ½ стопа. Например, f/3.2, f/7.1.

Для чего я все это рассказывал? Во-первых, чтобы было общее понимание, как между собой связаны разные параметры. Во-вторых, у каждого объектива указана максимально возможная открытая диафрагма, которая определяет его светосилу. И нужно иметь представление, насколько один объектив пропускает больше/меньше света на максимально открытой диафрагме. Для удобства можно возвести в квадрат минимальное диафрагменное число одного объектива и поделить на возведенное в квадрат такое же число второго. К примеру, у одного объектива диафрагма 1.8, у другого – 2.8. По светосиле они отличаются в 2.82 / 1.82 = 2.42 раза. Объектив с диафрагмой 1.8 пропустит в 2.42 раза больше света, чем объектив с диафрагмой 2.8.

Но почему F1.8 лучше, чем F2.4?

В то время как размер диафрагмы оказывает существенное влияние на боке в полнофункциональных камерах, на смартфонах этот эффект незначителен. Это связано с тем, что камеры смартфонов обычно не имеют возможности регулировать размер диафрагмы для использования в качестве варианта творческого дизайна. Но мы вернемся к этой идее позже.

Вместо этого основное внимание уделяется интенсивности света. Например, улучшение от F2.4 до F1.7 означает, что смартфон имеет вдвое больше света для фотографий

Это, в свою очередь, открывает путь для дополнительного освещения:

  1. Фотография, сделанная при половинной чувствительности ISO. Половинная чувствительность означает меньшее усиление сигнала изображения, означает меньший шум изображения.
  2. Фотография, сделанная с половинной выдержкой. Это снижает риск дрожания камеры при быстром движении или в условиях низкой освещенности.

Так в чем разница, например, между F1.8 и F2.0? На самом деле это не имеет значения. В качестве получаемого изображения алгоритмы обработки изображений играют гораздо более важную роль в век компьютерной фотографии.

Отговорки: почему телеобъективы на смартфонах — это катастрофа

Кстати, приведенные выше подробности также объясняют, почему телеобъективы в смартфонах обычно дают странные результаты. Поскольку фокусные расстояния сравнительно высоки, сила света в основном темнее по сравнению с широкоугольными объективами. В Samsung Galaxy S20 Ultra, например, достигает F3,5 только с телеобъективом, но в то же время телеобъективы гораздо более чувствительны к дрожанию камеры.

Как правило, 103-миллиметровый телеобъектив в S20 Ultra требует выдержки примерно в четыре раза быстрее, чем 26-миллиметровый основной датчик (если OIS одинаково хорошо работает с обоими). В то же время разница между F3.5 и F1.8 также приводит к уменьшению количества света на четверть. Чтобы компенсировать это при идентичных условиях освещения, необходимо, например, увеличить чувствительность ISO с ISO 100 до ISO 1600

Принимая во внимание обычно гораздо меньшие телеобъективы, становится ясно, что это не сработает

Как стоит работать с основными параметрами съемки в реальной жизни

То, что мы описывали выше, можно использовать при фотосъемке, работая со всеми параметрами в ручную. То есть, выставляете на камере мануальный режим (M) и следите за каждым параметром. А теперь раскрою вам секрет. Большая часть даже профессиональных фотографов не снимает в мануальном режиме.

В каждом фотоаппарате, поддерживающем ручные настройки, есть режимы приоритета выдержки и диафрагмы. Об этом мы говорили в статье «Как фотографировать зеркальным фотоаппаратом».

Режим приоритета диафрагмы позволяет контролировать только диафрагму, а выдержку оставить на откуп автоматике камеры. Режим приоритета выдержки работает аналогичным образом, только в нём вы отвечаете за выдержку.

Добавьте к этому отлично работающую систему Auto ISO в современных камерах, которая подбирает светочуствительность исходя из конкретной ситуации, и получится, что вы осуществляете контроль только 1 выбранного параметра.

Колесо выбора режимов Nikon: M — ручной, A — приоритет диафрагмы, S — приоритет выдержки

Например, вы выбираете приоритет диафрагмы для съемки портрета в солнечный день. Выставляете диафрагму на 2.8. Автоматика подбирает необходимую выдержку, а ISO в таких условиях выставляется на 100 единиц (то есть, на минимальное значение). Вообще, камера старается всегда выставить минимально возможное значение светочувствительности. Таким образом, вы получаете, например, диафрагму f/2.8 (которую задали вы), выдержку 1/1600 и ISO 100 (эти два значения подобрала автоматика). В случае, если получившийся кадр оказался слишком светлым или наоборот, слишком темным, вы можете влиять на экспозицию напрямую, увеличив или уменьшив её значение. Как влияет одна ступень экспозиции на изменение параметров написано выше. В случае, если выбран режим приоритета диафрагмы, изменение экспозиции на 1 ступень в плюс, заставит автоматику уменьшить выдержку до 1/800, чтобы сделать кадр светлее. В данном случае значение диафрагмы у нас является константой, а изменение экспозиции происходит только за счет двух параметров, ISO и выдержки

Кстати, обратите внимание на то, что шаг экспозиции в современных фотоаппаратах обычно установлен на 1/3 ступени. То есть, обычно это выглядит так: 0, +1/3, +2/3, +1 и т.д. Изменение на 1/3 уменьшит выдержку не до 1/800, а до 1/1250

Изменение на 1/3 уменьшит выдержку не до 1/800, а до 1/1250.

Таким образом, режим приоритета диафрагмы позволяет сконцентрироваться только на одном параметре и не отвлекаться на другие. При этом фотограф контролирует именно тот параметр, который ему интересен. С режимом приоритета выдержки всё примерно также, правда, исходя из личного опыта, могу сказать, что он обычно менее востребован.

Шаг 2 – Как определяется и изменяется диафрагма?

Диафрагма определяется с помощью так называемой шкалы диафрагм. На дисплее вашей камеры вы можете увидеть F/число. Число означает, насколько широкая диафрагма, что, в свою очередь, определяет экспозицию и глубину резкости. Чем меньше число, тем шире отверстие. Это может сначала вызвать путаницу – почему малое число соответствует большей светосиле? Ответ прост и лежит в плоскости математики, но сначала вы должны узнать, что такое диафрагменный ряд или стандартная шкала диафрагм.

Диафрагменный ряд: f/1.4, f/2, f/2.8, f/4, f/5.6, f/8, f/11, f/16, f/22

Главное, что нужно знать об этих числах – то, что между этими значениями одна ступень экспозиции, то есть при переходе от меньшего значения к большему в объектив будет попадать в два раза меньше света. В современных камерах есть также и промежуточные значения диафрагмы, позволяющие более точно настроить экспозицию. Шаг настройки в этом случае равен ½ или 1/3 ступени. К примеру, между значениями f/2.8 и f/4 будут лежать значения f/3.2 и f/3.5.

Теперь о более сложных вещах. Точнее о том, почему количество света между основными значениями диафрагмы различается в два раза.

Это происходит из математических формул. Например, мы имеем объектив 50 мм с диафрагмой 2. Чтобы найти диаметр диафрагмы, мы должны разделить 50 на 2. Получится 25 мм. Радиус будет равен 12,5 мм. Формула для площади S=Пи х R2.

Вот несколько примеров:

50 мм объектив с диафрагмой f/2 = 25 мм. Радиус получается 12,5 мм. Площадь согласно формуле равна 490 мм2. Теперь посчитаем для диафрагмы f/2.8. Диаметр диафрагмы равен 17,9 мм, радиус 8,95 мм, площадь отверстия 251,6 мм2.

Если разделить 490 на 251, то получится не ровно два, но это только потому, что диафрагменные числа округлены до первого десятичного знака. На самом деле равенство будет точным.

Вот так реально выглядят соотношения отверстий диафрагмы.

Зачем смартфону две камеры?

Ещё совсем недавно всё было предельно просто. Смартфоны обладали фронтальной камерой для, так называемых «себяшек», и основной камерой для создания фото и видеороликов. Но, относительно недавно, мы могли заметить, что количество линз камер на наших смартфонах количественно начинает увеличиваться. Таким образом, у всех нас мог возникнуть вопрос относительно того, а зачем же в нашем смартфоне необходимо сразу две основные камеры? Неужели одна лучше другой? На самом деле мы, как и прежде, обладаем лишь одной основной камерой, а второй модуль с дополнительной линзой становится вспомогательным. На ранних стадиях развития двойной основной камеры, вспомогательный модуль был просто монохромным, якобы для лучшего восприятия проходящего света через линзу камеры. Это позволяло создавать более качественные и детализированные фотографии. А ещё мы можем делать чёрно-белые фотографии без применения фильтров.

Но вот сегодня второй модуль камеры больше помогает нам использовать возможности смартфона для создания, так называемого, эффекта Боке. Суть данного эффекта заключается в том, чтобы вторая вспомогательная камера имела возможность определить задний фон и качественно его «размыть», оставляя чётким при этом сам объект фокусировки. Основная камера обычно обладает высоким разрешением, дабы смартфон создавал снимки хорошего качества. Но вот вспомогательная вторая линза может обладать разрешением 2 Мп или чуть-чуть выше, что вовсе не ставит под сомнение окончательное качество фотографии. Некоторые разработчики стараются укомплектовать двойной линзой фронтальные камеры, ведь таким образом мы сможем сделать не только фото с эффектом Боке, но и селфи!

Что такое светосила объектива

Когда выбирают объектив для фотоаппарата, его светосила является одним из основных параметров, на которые надо обращать внимание. Величина этого параметра указывает на то, в какой степени будет ослаблен поток света при попадании на светочувствительную матрицу

Иначе говоря, речь идет о количестве света, который сможет пройти через линзы.

Разные значения светосилы

При попадании внутрь часть светового пока проходит сквозь систему линз объектива, а другая отражается.

На что она влияет при фотосъемке

Светосила является характеристикой объектива. Она влияет на то количество света, которое не будет отражаться, а попадет внутрь, пройдя все линзы объектива.

Важно! Однако нужно учитывать, что есть дополнительные факторы, которые еще более могут уменьшить его количество до тех пор, пока он не попадет на светочувствительную матрицу. Величина светосилы аппарата может быть постоянной или переменной

В первом случае диафрагма будет открываться всегда до одного и того же значения. Во втором случае ее величину можно регулировать в зависимости от задач, которые стоят перед фотографом. Постоянное значение диафрагмы часто используется в тех объективах, где фокусное расстояние является постоянным

Величина светосилы аппарата может быть постоянной или переменной. В первом случае диафрагма будет открываться всегда до одного и того же значения. Во втором случае ее величину можно регулировать в зависимости от задач, которые стоят перед фотографом. Постоянное значение диафрагмы часто используется в тех объективах, где фокусное расстояние является постоянным.

Объективы, имеющие переменный зум, при использовании изменяющейся диафрагмы устанавливают пределы в зависимости от того, на какое фокусное расстояние они установлены. Для примера можно рассмотреть фотокамеру Canon 18-135. Диафрагма здесь может изменяться в пределах от 3.5 до 5.6. Когда фотограф применяет фокусное расстояние, равное 18 миллиметров, максимальная диафрагма может быть f3.5, но если оно составит 135 мм, то ее можно будет увеличить только до f5.6.

От каких параметров зависит светосила

Светосила объектива говорит о том, какая часть поступающего света проходит сквозь объектив и участвует в создании изображения. Ее величина зависит от максимальной величины открытого отверстия диафрагмы. Чем оно шире, тем в большей степени проявляется светосила объектива.

Важно! Величина диафрагмы определяется параметром f. Чем меньшее значение указано рядом с ним, тем этот параметр лучше

Например, диафрагма f1.8 будет больше, чем при f2.8.

На нее влияет уровень качества изготовления линз, из которых сделан объектив. Кроме этого светосилу характеризует фокусное расстояние.

Нужно отметить, что светосила представляет качество объектива, а упомянутые характеристики в той или иной степени уменьшают количество света, которое будет участвовать в создании изображения.

Объектив — это сложная система линз

На что влияет фокусное расстояние

В первую очередь этот параметр влияет на то, что поместится в кадре. Чем меньше значение, тем шире получается угол обзора, но при этом сильнее искажается перспектива. Высокое фокусное расстояние помимо прочего дает размытие фона.

Исходя из этого, различают несколько видов объективов по размеру фокусного расстояния.

  1. Сверхширокоугольные от 7 до 24 мм. Используются для получения фотографий с максимально возможным углом обзора. 14 мм объектив является самым популярным для съемки пейзажей. Размыть фон с таким объективом практически невозможно.
  2. Широкоугольные – от 24 до 35 мм. Объектив имеет меньшее размытие перспективы в сравнении с предыдущим, но и угол обзора здесь меньше. Применяется для съемки на улицах города, групповых портерных фото и иногда для пейзажей.
  3. Стандартные – от 35-85 мм. Подходят для съемки человека в полный рост, пейзажа и для большинства обычных фотографий без сюжета. Нельзя снимать портреты, так как объектив искажает пропорции лица
  4. Телеобъективы – от 85 мм. С 85 до 135 мм искажений почти нет, это оптимальный вариант для съемки портретов. После 135 пространство сжимается, что также не подойдет для съемок лица. Телеобъективы подходят для съемки предметов, к которым трудно подойти. Это могут спортивные события, дикие животные и прочие объекты.

Как настроить фокус

Для того чтобы настроить фокус, в первую очередь нужно понимать, что фотограф хочет увидеть на снимке. Исходя из этого, следует выставлять конкретные значения на объективе. Чтобы получить главный объект четким, а фон размытым, следует выбрать маленькое значение фокусного расстояния, например, для объектива 18-55 ближе к 18. Если нужно получить на фото четкий передний план и перспективу, то принцип соответственно будет обратным.

После этого в видоискателе нужно найти нужную точку и сфокусироваться на ней. Данная функция есть у большинства современных фотоаппаратов. В зависимости от производителя и модели, точек фокусировки может быть много. Камера захватывает не только основной объект, но и ближайшие к нему.

Режимы фокусировки

Большинство зеркальных фотоаппаратов имеют несколько режимов фокусировки, которые используются для разных целей. В настройках фокуса есть обозначения S, AF, MF. Рассмотрим, как они расшифровываются.

  1. «AF-S» — Auto Focus Single, что можно перевести на русский язык как «одиночный афтофокус». Суть его заключается в том, что при нажатии кнопки спуска наполовину объектив наводит резкость и при получении удачного варианта останавливается.
  2. «AF-C» — Auto Focus Continuous, что можно трактовать, как продолжительный автофокус. В данном случае при нажатой наполовину кнопке камера продолжает следить фокусом, даже если в этом момент меняется композиция или объекты двигаются.
  3. «AF-A» — Auto Focus Automatic, автоматический автофокус. Фотоаппарат сам выбирает один из двух предыдущих режимов, многие новички снимают именно на нем и не подозревают о существовании других вариантов.
  4. « MF» — Manual Focusing, ручная фокусировка, необходимый вариант для продвинутых фотографов. Здесь фокусировка осуществляется вращением кольца на объективе.

Очевидно, что нельзя выбрать правильное фокусное расстояние в объективе, так как оно будет отличаться для разных типов съемки.

Когда необходима?

Любители фотосъемки, которые используют цифровое оборудование только для бытовых снимков, могут вполне нормально обходиться доступной техникой. Для таких пользователей параметр светосилы не имеет особого значения.

Профессиональные фотографы обращают внимание на каждую характеристику. Они используют светосильные объективы в следующих случаях

Данный параметр пригодится во время спортивных соревнований или при съемке дикой природы, когда важно быстро и четко запечатлеть особый момент

Чтобы объект, который движется быстро, получился на снимке четко, нужно установить короткую выдержку.
Без светосильного объектива не удастся получить качественные снимки ночного города или других пейзажей, сделанных после захода солнца

Данный параметр пригодится во время спортивных соревнований или при съемке дикой природы, когда важно быстро и четко запечатлеть особый момент. Чтобы объект, который движется быстро, получился на снимке четко, нужно установить короткую выдержку.
Без светосильного объектива не удастся получить качественные снимки ночного города или других пейзажей, сделанных после захода солнца. Такие модели способы улавливать даже малейшие крупицы света, чтобы получилось качественное изображение.
Если чувствительность матрицы к свету недостаточная, то при помощи объектива этот недостаток можно исправить.
Без специального оборудования также не обходятся репортеры, которые работают в различных условиях

Это могут быть темные помещения, такие как музеи, ночные клубы, рестораны и прочее.

Такие модели способы улавливать даже малейшие крупицы света, чтобы получилось качественное изображение.
Если чувствительность матрицы к свету недостаточная, то при помощи объектива этот недостаток можно исправить.
Без специального оборудования также не обходятся репортеры, которые работают в различных условиях. Это могут быть темные помещения, такие как музеи, ночные клубы, рестораны и прочее.

Samsung Galaxy S9 с диафрагмой f/1.5 и f/2.4. Что это значит?

12 января 2018, 19:17 

Это значит, что маркетологи в Samsung не зря едят свой хлеб. Чем производители смартфонов занимались последние годы? Они методично расширяли диафрагму, чтобы на микроскопический сенсор телефона попадало больше света. Они пришли к пониманию, что высокое разрешение (16-21 Мп) с маленькими пикселями (0,9-1,1 мкм) работает хуже среднего разрешения (12-13 Мп) с пикселями побольше (1,25-1,4 мкм) – при 12-13 Мп детализация сохраняется, но света увеличенные пиксели собирают больше. Также почти все компании успешно освоили систему оптической стабилизации, что, в частности, позволило выставлять больше выдержку, дабы матрица успевала захватить больше света. То есть компании делали все для того, чтобы малюсенький сенсор получал как можно больше света.

Передовые фотофлагманы 2017 года имеют светосилу f/1.6 (LG V30, Huawei Mate 10), f/1.7 (Samsung Galaxy S8, HTC U11), f/1.8 (iPhone X, Pixel 2). По последним слухам, в Galaxy S9 будет механически регулируемая диафрагма со значениями f/1.5 и f/2.4. Несмотря на предположения, промежуточные значения выставлять будет нельзя, то есть в распоряжении пользователя будет два режима – для дня и для ночи. Аналогичное решение применяется в раскладушке Samsung W2018, которая продается эксклюзивно в Китае. Посмотрите гифку:

То, что камеры смартфонов эволюционируют, безусловно, радует. И я рад, что Samsung, чьи флагманы Galaxy легко входят в Топ-3 лучших смартфонов для фото-, видеосъемки, взяла на себя роль лидера направления (или пытается взять). Однако радость по ожидаемому скачку в качестве фото, как мне кажется, преждевременная. Во-первых, между f/1.5 и текущим f/1.7 у того же Galaxy Note 8 не такая уж и большая разница, если учесть размеры модуля камеры. Да и где восторженные возгласы по камере LG V30 с f/1.6? Их нет, потому что светосила радикально не изменила качество фото в сравнении с тем же G6 (f/1.8). Во-вторых, я вижу очень мало сценариев, где f/2.4 будет показывать себя лучше f/1.5. Ночные клубы, дом, макро, ночные пейзажи, портреты, съемка подвижных объектов и динамичных сцен? Для всех этих сюжетов предпочтительнее f/1.5, то есть действует правило «чем больше света (меньше выдержка, меньше ISO) – тем лучше».

Если у вас есть на руках iPhone X, то можете провести небольшой тест – снять что-то в помещении (или даже на улице) на разные камеры (ширик и телевик), попытавшись выстроить одинаковое фокусное расстояние. Вы удивитесь, насколько фото с камеры с f/2.4 более шумные в сравнении с f/1.8 даже при хорошем свете.

В твитере (подписывайтесь на меня!) написали, что f/2.4 позволит лучше обрабатывать дневные сцены на ярком солнце. Такое ощущение, что автор этих строк не пользовался смартфонами 2-3 года назад, когда f/2.4 была как раз в ходу. Снимали мы на смартфоны с такой «дыркой». И даже сейчас у китайцев она в почете. Вы понимаете, к чему я клоню? Для того, чтобы справляться с ярким светом, на смартфонах придумали и многие даже очень эффективно реализовали HDR, причем HDR+ от Google исправляет освещение так, как никакой светосиле f/2.4 даже и не снилось. Составляющие модуля камеры, безусловно, очень важны для конечного результата. И я не исключаю, что будущее как раз за сменной светосилой (но без двух значений, а чтобы светосила была переменная, да еще и приправленная плавным зумом), но Galaxy S9 революции не сделает. Возможно, увидев фотографии с S9, передумаю, но пока, видя фотографии с Samsung W2018 (f/1.5 – f/2.4, 12 Мп, 1,4 мкм, OIS), я включил скептика:

Samsung W2018 с f/1.5 (с) pcpop.com
Samsung W2018 с f/2.4 (с) pcpop.com

Как мы знаем, у флагманов разных компаний плюс-минус одинаковые камеры. Но снимают они очень по-разному и по мнению большинства журналистов и изданий лучшим камерофоном, в совокупности, является Pixel 2 | 2 XL. Железо у него обычное, а весь секрет кроется в алгоритмах.

да, это человек, фото с Note 8 (с) /eldarmurtazin

Именно алгоритмы отличают хорошую камеру от плохой. И пока Samsung делает из лиц людей головы манекенов я постою в стороне от хайпа. Твитер шумит, комментаторы в группе ВК тоже воодушевлены, то есть дело сделано и вторичный внешний вид S9 | S9+ с прошлогодним неудобным сканером пальца уйдет на второй план. Аплодирую южнокорейским маркетологам и очень жду возможности испытать камеру своими руками.
Вдруг я зря все тут понаписал? В общем, побреюсь налысо, если Galaxy S9 будет снимать лучше Pixel 2 XL. Запомните этот твит.

Евгений Макаров. Mobiltelefon

Что такое аберрация

Как уже было сказано, идеального объектива просто нет. Законы физики никто не отменял и никогда не отменит. А они не позволяют световому лучу следовать именно по тому пути, который ему рассчитали оптики в пределах некой идеальной оптической системы. Именно это ведет к различного вида аберрациям (сферическим, хроматическим и пр.). И инженеры, разрабатывающие объективы, не могут это исправить. В центре линза идеальна. Но ближе к краям она в той или иной мере искажает свет. Чем ближе к краю линзы — тем в большей степени свет рассеивается и преломляется.

При полностью открытой диафрагме на плёнку или матрицу цифрового аппарата попадает свет, который собран со всей поверхности линзы. В этом случае все аберрации объектива проявляются очень наглядно. Когда мы прикрываем отверстие диафрагмы, часть светового потока, проходящая через края всех линз объектива, отсекается. Таким образом, в формировании изображения принимает участие только центр линз, который свободен от искажений.

Всё кажется довольно простым. Чем меньше отверстие диафрагмы, тем, таким образом, выше резкость изображения. Но это не так. При съемке на самых маленьких диафрагмах нас ждет неожиданная большая неприятность.

Мегапиксели не играют ключевой роли

Производители заставили думать потребителей, что количество мегапикселей напрямую влияет на качество снимков, но все это лишь маркетинговое заигрывание. Правда в том, что большое количество мегапикселей не всегда приводит к хорошему качеству изображения, а иногда даже портит его.

Так на что же именно влияют мегапиксели в вашем смартфоне? А влияют они всего на одну вещь — детализацию. Чем больше мегапикселей мы имеем, тем детализированней получится изображение. Такое изображения идеально подойдет для обрезки и масштабирования. Также, если вы распечатываете огромные фотографии и вешаете их на стены, то для вас это тоже играет большую роль.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Эксперт по товарам
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: